Workflows

Data anlysis workflows are encapsulated in domain specific modules. The module results can be linked, visualized and combined into interactive reports.

Linking modules

Induvidual module results can be combined. For example, here is an example data worflow showing how to load, preprocess and review the results for your data.

%%{init: {'theme': 'dark' }%%
graph LR

    1((1)) --> data["fa:fa-database Data #9679;"];
    data --> 2;
    2((2)) --> preproc["fa:fa-scissors Preprocess #9679;"];
    3((3)) --> plot["fa:fa-braille Plot #9679;"];
    4((4)) --> report["fa:fa-file-text-o Report #9679;"];
    preproc --> 3;
    preproc --> 4;

    classDef green fill:#33a378, color:#fff, stroke:#33a378;
    classDef blue fill:#4472c4, color:#fff, stroke:#4472c4;
    class 1 blue;
    class 2 blue;
    class 3 blue;
    class 4 blue;
    class data green;
    class preproc green;
    class plot green;
    class report green;

The Preprocess module is used to separate the numeric data from its sample (row) and variable (column) meta data. This creates a _data, _row_meta and _col_meta objects for each original data set. An example of these objects relate to one another is shown below.

The Preprocess module can also be used to overview and impute missing values.

Module workflows

Each module uses the same basic workflow. For example, to prepare the data for analyis you can use the preprocess module with the following workflow.

%%{init: {'theme': 'dark'} }%%
graph LR
    1((1)) --> preproc["fa:fa-scissors Preprocess #9679;"];
    2((2)) --> calculate("fa:fa-sliders Calculate #9679;");
    3((3)) --> explore("fa:fa-pencil-square-o Explore #9679;");
    4((4))  --> plot("fa:fa-bar-chart Plot #9679;")
    5((5)) --> report("fa:fa-file-text-o Report #9679;");
    6((6)) --> save("fa:fa-file Save #9679;");
    preproc --> 4;
    preproc -->5;
    preproc --> 2;
    preproc --> 3;
    calculate --> 6;

    classDef green fill:#33a378, color:#fff, stroke:#33a378;
    classDef blue fill:#4472c4, color:#fff, stroke:#4472c4;
    classDef gray fill:#808080, color:#fff, stroke:#4472c4;
    class 1 blue;
    class 2 blue;
    class 3 blue;
    class 4 blue;
    class 5 blue;
    class 6 blue;
    class preproc green;
    class plot gray;
    class report gray;
    class explore gray;
    class calculate gray;
    class save gray;

Data analysis options and results can be configured and sumarized in calculate. The results can be visualized using static plot or interactive explore tabs. The methods, results and created visualizations can be summarized in the report. This can be done iteratively to explore and refine the analysis results and summaries. Once the results are finalized the data object can be saved using the controls at the bottom of the calculate menu.

Full workflow

Below is an example of how to progress an analysis from data loading, formatting and all the way to creating rich mapped networks.

%%{init: {'theme': 'dark'}}%%
graph LR

    1((1)) --> data["fa:fa-database Data #9679;"];
    2((2)) --> preproc["fa:fa-scissors Preprocess #9679;"];
    3((3)) --> stats["fa:fa-superscript Statistics #9679;"];
    4((4)) --> path["fa:fa-flask Pathway #9679;"];
    5((5)) --> clust["fa:fa-snowflake-o Cluster #9679;"];
    6((6)) --> multi["fa:fa-codepen Multivariate #9679;"];
    7((7)) --> ml["fa:fa-university Model #9679;"];
    8((8)) --> net["fa:fa-share-alt Network #9679;"];
    9((9)) --> report["fa:fa-file-text-o Report #9679;"];
    vis["fa:fa-braille Plot."];
    data --> 2;
    preproc --> 3;
    preproc --> 5;
    preproc --> 6; 
    preproc --> 7;
    stats --> 4;
    preproc --> 8;
    stats --> vis;
    multi --> vis;
    clust --> vis;
    ml --> vis;
    

    classDef green fill:#33a378, color:#fff, stroke:#33a378;
    classDef blue fill:#4472c4, color:#fff, stroke:#4472c4;
    class 1 blue;
    class 2 blue;
    class 3 blue;
    class 4 blue;
    class 5 blue;
    class 6 blue;
    class 7 blue;
    class 8 blue;
    class 9 blue;
    class data green;
    class preproc green;
    class stats green;
    class clust green;
    class multi green;
    class ml green;
    class path green;
    class report green;
    class net green;
    class vis green

Available analyses

  • Data

    • upload data from files or load saved projects
    • overview and summarize data components
    • manage saved data
    • download
  • Plot

    • interactively filter data to plot
    • create dynamic visualizations
      • line plots
      • scatter plots
      • box plots
    • map data to plot options
      • size/width
      • color
      • shape
      • row and/or column sub plots
    • modify plotting themes, text and legend
  • Preprocess

    • merge numeric data with sample and variable meta data
    • overview and impute missing values
  • Statistics

    • identify significant differences between two groups
    • group summary statistics
    • volcano plots
    • violin and box plots
  • Cluster

    • hierarchical clustering
      • combined samples and variables
      • samples
      • variables
      • correlations between samples or variables
    • heatmaps
    • dendrograms
  • Multivariate

    • Principal Components Analysis (PCA)
    • Visualize results
      • scree plots
      • scores plot
      • loadings plot
      • biplot
      • outlier plot
  • Pathway

    • biochemical pathway enrichment analysis
    • biochemical pathway and fold change visualization
  • Model

    • machine learning model training and validation
      • classification
      • regression
    • feature selection
    • model ensemble
  • Network

    • Calculate relationships
      • biochemical product to precursor
      • molecular structural similarity
      • empirical regularized correlations
    • interactive network visualizations
    • map analysis results to network properties
    • combine and modify network relationships and properties